

Sixth Semester B.E. Degree Examination, Feb./Mar. 2022 Microelectronics

Time: 3 hrs.

1

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain channel length modulation. Obtain the modified equation of drain current in saturation region operation of MOSFET. (07 Marks)
 - b. Write a note on body and temperature effects observed in MOSFETs. (05 Marks)
 - c. An enhancement PMOS transistor has $K_p^1(W/L) = 80\mu A/V^2$, $V_t = -1.5V$ and $\lambda = -0.02V^{-1}$. The gate is connected to ground and the source to +5V. Find the drain current for $V_D = +4V$. (04 Marks)

OR

2 a. For the common source circuit shown in Fig.Q.2(a), sketch the transfer characteristic and obtain analytical expressions for the same. (08 Marks)

- b. An n-channel enhancement MOSFET is measured to have a drain current of 4mA at $V_{GS} = V_{DS} = 5V$ and of 1mA at $V_{GS} = V_{DS} = 3V$. What are the values of $K_n^1(W/L)$ and V_t for this device? (04 Marks)
- c. For the circuit shown in Fig.Q.2(c), what should be the value of R_D to establish a drain voltage of 0.1V? What is the effective resistance between drain and source at this operating point? Let $V_t = 1V$ and $K_n^1(W/L) = 1mA/V^2$. (04 Marks)

Module-2

3 a. Consider the MOSFET circuit shown in Fig.Q.3(a). Derive an expression for MOSFET trans conductance parameter, g_m. Also, show how g_m can be obtained from the transfer characteristic of the device. (06 Marks)

15EC655

(08 Marks)

(09 Marks)

- b. Derive the expression of higher cut-off frequency for a common source amplifier circuit.
- In a MOS amplifier circuit, for a particular value of I_D (DC bias current), the value device g_m c. is found to be 0.75m A/V. If I_D is increased by 4 times, what will be the new value of device (02 Marks) g_m.

OR

Design the biasing circuit shown in Fig.Q.4(a) to establish a drain current, $I_D = 0.5$ mA. The 4 a. MOSFET has $V_t = 1V$, $K_n^1\left(\frac{W}{L}\right) = 1mA/V^2$ and $V_{DD} = 15V$. Assume one-third of V_{DD} across R_D and R_S , and neglect channel length modulation, $\chi = 0$. Determine percentage change in value of I_D when MOSFET is replaced by another having $V_t = 1.5V$.

- Obtain T-model for a MOSFET from its hybrid-II model. (04 Marks)
- For an n-channel MOSFET with $t_{ox} = 10$ nm, $L = 1 \mu$ m, $W = 10 \mu$ m, $L_{ov} = 0.05 \pi$ m and c. $C_{sbo} = C_{dbo} = 10$ fF. Find the values of C_{ox} , C_{ov} and C_{gs} . Note that permittivity of oxide, $\varepsilon_{ox} = 3.9\varepsilon_{o}$. (03 Marks)

Module-3

- Consider a source follower circuit. Let $R_{sig} = 1M\Omega$, $R_L = 15K\Omega$, $R_G = 4.7M\Omega$, $g_m = 1mO$ 5 a and $r_o = 150 K\Omega$. Find R_{in} , A_V , R_{out} and G_V of the circuit. (06 Marks)
 - b. Explain MOSFET current steering circuit.

b.

c. Mention the effects of using source resistance, R_s, in a common source amplifier circuit.

(03 Marks)

(07 Marks)

OR

Derive the approximate expression for upper cut off frequency (3dB) for the direct coupled 6 a. IC amplifier in the case of absence of dominant pole. (06 Marks)

Compare BJT and MOSFET with respect to transconductance, gm and output resistance, ro. (04 Marks)

Obtain the value of R in the circuit of Fig.Q.6(c) for $V_{DD} = 3V$ and $I_{REF} = I_0 = 100 \mu A$. Let c. Q_1 and Q_2 be matched, channel lengths = 1 μ m, channel widths = 10 μ m, V_t = 0.7V and $K_n^1 = 200\mu A/V^2$. Assuming early voltage parameter, $V_A^1 = 20V/\mu m$, find the output resistance of the circuit. Also, find the lowest possible value of Vo. (06 Marks)

2 of 3

15EC655

Module-4

- 7 a. A CMOS common-source amplifier has $W/L = 7.2 \mu m/0.36 \mu m$ for all transistors, $\mu_n C_{ox} = 387 \mu A/V^2$, $\mu_p C_{ox} = 86 \mu A/V^2$, $I_{REF} = 100 \mu A$, $V_{An}^1 = 5V/\mu m$ and $|V_{AP}^1| = 6V/\mu m$. For Q₁, C_{gs} = 20fF, C_{gd} = 5fF, C_L = 25fF and R_{sig} = 10K\Omega. Assume that C_L includes all the capacitances introduced by Q₂ at output node. Find upper 3dB frequency, using open-circuit time constants. (08 Marks)
 - b. For a common-gate amplifier with an active load, derive the expressions for R_{in} , A_v and G_v . (08 Marks)

OR

- 8 a. Derive the expressions of R_{out} and A_{vo}, for a cascade amplifier with active load. Also, draw the equivalent circuits at the output of a cascade amplifier. (08 Marks)
 - b. Sketch the high frequency equivalent circuit of common gate amplifier with active load. Using the same, derive an expression of f_H of the circuit using open-circuit time constants method. (08 Marks)

Module-5

- 9 a. Obtain an expression of CMRR resulting from g_m mismatch in a MOS differential pair circuit. (08 Marks)
 - b. Explain the operation of two stage CMOS OP-AMP and hence determine DC open-loop gain. (08 Marks)

OR

- 10 a. Sketch the active loaded MOS differential pair circuit and hence determine, short circuit transconductance parameter, G_m . (08 Marks)
 - b. For the MOS differential pair with a common-mode voltage, V_{CM} applied, as shown in Fig.Q.10(b), find V_{OV} , V_{GS} , i_{D_1} , i_{D_2} , V_{D_1} , V_{D_2} and V_s . What is the highest value of V_{CM} for which Q_1 and Q_2 remain in saturation? If current source I requires a minimum voltage of 0.4V to operate properly, what is the lowest value allowed for V_{CM} . Let $V_{DD} = V_{SS} = 1.5V$,

 $K_n^1\left(\frac{W}{L}\right) = 4mA/V^2$, I = 0.4mA and $R_D = 2.5K\Omega$. Assume the transistors are matched. Given

(08 Marks)

