

15EC655

Sixth Semester B.E. Degree Examination, Feb./Mar. 2022 Microelectronics

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain channel length modulation. Obtain the modified equation of drain current in saturation region operation of MOSFET.
(07 Marks)
b. Write a note on body and temperature effects observed in MOSFETs.
(05 Marks)
c. An enhancement PMOS transistor has $\mathrm{K}_{\mathrm{p}}^{1}(\mathrm{~W} / \mathrm{L})=80 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{t}}=-1.5 \mathrm{~V}$ and $\lambda=-0.02 \mathrm{~V}^{-1}$. The gate is connected to ground and the source to +5 V . Find the drain current for $\mathrm{V}_{\mathrm{D}}=+4 \mathrm{~V}$.
(04 Marks)
OR
2 a. For the common source circuit shown in Fig.Q.2(a), sketch the transfer characteristic and obtain analytical expressions for the same.
(08 Marks)

Fig.Q.2(a)
b. An n-channel enhancement MOSFET is measured to have a drain current of 4 mA at $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}$ and of 1 mA at $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}$. What are the values of $\mathrm{K}_{\mathrm{n}}^{1}(\mathrm{~W} / \mathrm{L})$ and V_{t} for this device?
(04 Marks)
c. For the circuit shown in Fig.Q.2(c), what should be the value of R_{D} to establish a drain voltage of 0.1 V ? What is the effective resistance between drain and source at this operating point? Let $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$ and $\mathrm{K}_{\mathrm{n}}^{1}(\mathrm{~W} / \mathrm{L})=1 \mathrm{~mA} / \mathrm{V}^{2}$.
(04 Marks)

Module-2

3 a. Consider the MOSFET circuit shown in Fig.Q.3(a). Derive an expression for MOSFET trans conductance parameter, g_{m}. Also, show how g_{m} can be obtained from the transfer characteristic of the device.

Fig.Q.3(a)
b. Derive the expression of higher cut-off frequency for a common source amplifier circuit.
(08 Marks)
c. In a MOS amplifier circuit, for a particular value of I_{D} (DC bias current), the value device g_{m} is found to be $0.75 \mathrm{~m} \mathrm{~A} / \mathrm{V}$. If I_{D} is increased by 4 times, what will be the new value of device g_{m}.
(02 Marks)

OR

4 a. Design the biasing circuit shown in Fig.Q.4(a) to establish a drain current, $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$. The MOSFET has $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}^{1}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$. Assume one-third of V_{DD} across R_{D} and R_{S}, and neglect channel length modulation, $\lambda=0$. Determine percentage change in value of I_{D} when MOSFET is replaced by another having $\mathrm{V}_{\mathrm{t}}=1.5 \mathrm{~V}$.
(09 Marks)

Fig.Q.4(a)
b. Obtain T-model for a MOSFET from its hybrid-II model.
(04 Marks)
c. For an n -channel MOSFET with $\mathrm{t}_{\mathrm{ox}}=10 \mathrm{~nm}, \mathrm{~L}=1 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}, \mathrm{~L}_{\mathrm{ov}}=0.05 \pi \mathrm{~m}$ and $\mathrm{C}_{\mathrm{sbo}}=\mathrm{C}_{\mathrm{dbo}}=10 \mathrm{fF}$. Find the values of $\mathrm{C}_{\mathrm{ox}}, \mathrm{C}_{\mathrm{ov}}$ and C_{gg}. Note that permittivity of oxide, $\varepsilon_{\mathrm{ox}}=3.9 \varepsilon_{0}$.
(03 Marks)

Module-3

5 a. Consider a source follower circuit. Let $R_{\text {sig }}=1 \mathrm{M} \Omega, R_{L}=15 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{G}}=4.7 \mathrm{M} \Omega, \mathrm{g}_{\mathrm{m}}=1 \mathrm{~m} \Omega$ and $r_{o}=150 \mathrm{~K} \Omega$. Find $R_{\text {in }}, A_{V}, R_{\text {out }}$ and G_{V} of the circuit.
(06 Marks)
b. Explain MOSFET current steering circuit.
(07 Marks)
c. Mention the effects of using source resistance, R_{S}, in a common source amplifier circuit.
(03 Marks)

OR

6 a. Derive the approximate expression for upper cut off frequency $(3 \mathrm{~dB})$ for the direct coupled IC amplifier in the case of absence of dominant pole.
(06 Marks)
b. Compare BJT and MOSFET with respect to transconductance, g_{m} and output resistance, r_{o}.
(04 Marks)
c. Obtain the value of R in the circuit of Fig.Q.6(c) for $V_{D D}=3 V$ and $I_{\text {REF }}=I_{o}=100 \mu \mathrm{~A}$. Let Q_{1} and Q_{2} be matched, channel lengths $=1 \mu \mathrm{~m}$, channel widths $=10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{t}}=0.7 \mathrm{~V}$ and $\mathrm{K}_{\mathrm{n}}^{1}=200 \mu \mathrm{~A} / \mathrm{Y}^{2}$. Assuming early voltage parameter, $\mathrm{V}_{\mathrm{A}}^{1}=20 \mathrm{~V} / \mu \mathrm{m}$, find the output resistance of the circuit. Also, find the lowest possible value of V_{0}.
(06 Marks)

Fig.Q.6(c)

Module-4

15EC655

7 a. A CMOS common-source amplifier has $\mathrm{W} / \mathrm{L}=7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}$ for all transistors, $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=387 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=86 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{I}_{\mathrm{REF}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{An}}^{1}=5 \mathrm{~V} / \mu \mathrm{m}$ and $\left|\mathrm{V}_{\mathrm{AP}}^{1}\right|=6 \mathrm{~V} / \mu \mathrm{m}$. For $\mathrm{Q}_{1}, \mathrm{C}_{\mathrm{gs}}=20 \mathrm{fF}, \mathrm{C}_{\mathrm{gd}}=5 \mathrm{fF}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{fF}$ and $\mathrm{R}_{\mathrm{sig}}=10 \mathrm{~K} \Omega$. Assume that C_{L} includes all the capacitances introduced by Q_{2} at output node. Find upper 3 dB frequency, using open-circuit time constants.
(08 Marks)
b. For a common-gate amplifier with an active load, derive the expressions for $R_{i n}, A_{v}$ and G_{v}.
(08 Marks)

OR

8 a. Derive the expressions of $\mathrm{R}_{\text {out }}$ and A_{vo}, for a cascade amplifier with active load. Also, draw the equivalent circuits at the output of a cascade amplifier.
(08 Marks)
b. Sketch the high frequency equivalent circuit of common gate amplifier with active load. Using the same, derive an expression of f_{H} of the circuit using open-circuit time constants method.
(08 Marks)

Module-5

9 a. Obtain an expression of CMRR resulting from g_{m} mismatch in a MOS differential pair circuit.
(08 Marks)
b. Explain the operation of two stage CMOS OP-AMP and hence determine DC open-loop gain.
(08 Marks)

OR

10 a. Sketch the active loaded MOS differential pair circuit and hence determine, short circuit transconductance parameter, G_{m}.
(08 Marks)
b. For the MOS differential pair with a common-mode voltage, V_{CM} applied, as shown in Fig.Q.10(b), find $V_{\text {ov, }}, V_{G S}, i_{D_{1}}, i_{D_{2}}, V_{D_{1}}, V_{D_{2}}$ and V_{s}. What is the highest value of $V_{C M}$ for which Q_{1} and Q_{2} remain in saturation? If current source I requires a minimum voltage of 0.4 V to operate properly, what is the lowest value allowed for V_{CM}. Let $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS}}=1.5 \mathrm{~V}$, $\mathrm{K}_{\mathrm{n}}^{1}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)=4 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{I}=0.4 \mathrm{~mA}$ and $\mathrm{R}_{\mathrm{D}}=2.5 \mathrm{~K} \Omega$. Assume the transistors are matched. Given $\mathrm{V}_{\mathrm{t}}=0.5 \mathrm{~V}$.

Fig.Q.10(b)

